
Unsupervised learning in evolving environments

Suraj Pattar and Zsolt Pasztori

Abstract— This project proposal addresses the problem of
learning from data streams. Data streams are quickly taking
the stage as a major paradigm in data science. A number of
relevant cases have arisen as a consequence of the availability
of cheap, highly autonomous devices for sensing, computing,
and transmitting information. These include sensor-equipped
smartphones, the Internet of Things, ambient and wearable
sensors. Data streams play a very important role in robotics
since the output of proximity sensors, cameras, encoders etc. can
be treated as such. All of these provide uninterrupted flows of
data that need to be taken care of in real time. In other words,
many, if not most, interesting data today come in the form
of streams. We are particularly interested in the data analysis
process of data clustering, which is very relevant because it is
by itself one of the pillars of information mining, and at the
same time it is also a building block underlying some successful
approximation (regression) and classification (decision-making)
models. In this research, we will study methods to evaluate the
validity of an existing streaming clustering model when the data
is changing. As a consequence of such change, which may be due
to several reasons (e.g., an autonomous robot exploring different
parts of an environment, a computer vision system working
under evolving daylight), the current model will be less reliable
and lose relevance, so it will need to be adjusted. Methods for
detecting such decrease, and methods for responding to the
situation, will be implemented.

I. INTRODUCTION

In recent years with the spread of information technology
in to the every day life, the amount of data generated
each day has become almost unimaginable. Just to depict
this, there is 300 hours of video uploaded to the worlds
biggest video streaming site, youtube.com, every minute.
There are millions of mobile phones, computers, cameras
and other sensors connected to the Internet, uploading data
to it constantly. These flows of data are called data streams.
During our group project we have examined two different
approaches to process this vast data, concentrating on remov-
ing the inherent noise from it. Working with data streams has
some very specific challenges, these include:

• The sheer size of the data can be overwhelming. Data
might not fit into the memory, or even to any other
storage. The processing of the data must be constant and
faster then the generation of it. Otherwise some parts of
the data might be lost or the algorithm might lag behind.
It is important when dealing with data streams to be able
to recursively update the model, this way we can make
only a single pass over data and reduce the computation
time.

• The underlying patterns of the data can change over
time. The algorithm must be updated to reflect these
changes. This can happened because the robot is situated

in a changing environment, or it is exploring a new
one.There are two kinds of changes:

– The underlying distribution’s mean and variance
can change slowly over time. This change is called
shift. It is relatively easy to follow by updating
the models regularly as data arrives. During our
work we have focused on being able to manage
this phenomenon.

– In the underlying data some distributions might
disappear and new ones can appear. This is harder
to detect, since the new distributions are uncorre-
lated with the old ones, at first they can be falsely
identified as anomalies. It is a conceptually hard
problem to manage this kind of change, since every
algorithm’s first assumptions is that the there is a
correlation between the past and future values.

• For some types of data, for example great amount of
discrete attributes, even the representation of a model
might get too big. The model representations has to be
balanced both in computation effort and storage space
against precision. For some data types this represen-
tation issues can be crucial but in our case, since we
are focusing on floating point data, this effect can be
neglected.

II. LITERATURE REVIEW

During our group project we have examined ways to detect
anomalies in data streams. For this purpose we need to
be able to compare new data points to a representation of
previous knowledge, since an anomaly is a point which does
not conform to an expected distribution. The first approach
we looked at was based on unsupervised machine learning.
Unsupervised learning gives an opportunity to learn represen-
tations from high amount of data without the help of labeled
training data. This way we can reduce the data from poten-
tially millions of entries to a few managable distributions,
which can be represented by points. Supervised learning
has the advantage of easy interpretability and evaluation,
but it needs carefully labeled data, which is usually scarce
and expensive to obtain. During k-means clustering we are
partitioning n data points into k clusters. The k clusters are
represented by k center points, this way we reduce the input
data dimension n to k considerably, where n� k . When a
new data point arrives the algorithm tries to assign it to the
already existing clusters, if a strong assignment is possible
then the point conforms to our expectations. If the point
cannot be assigned then it can be considered an anomaly. The
cluster centers are later updated according to the new point if
it was found not to be an anomaly. The difficulty in k-means

clustering comes from the decision of hyperparameters. We
need to decide how many clusters to use and what is the
measure when we can say that a point is anomaly. The second

Fig. 1. 3-means algorithm on 3 normal distributions

approach is based on the recently proposed typicality and
eccentricity data analysis (TEDA) framework. This approach
is conceptually different from the usual statistical or the
clustering methods. It does not seek to represent our data
by reducing dimensionality to an ”average” distribution, but
rather compares new points to all previous points and from
there it deduces whether it is an anomaly.

The popular statistical methods are based on three assump-
tions: there are infinite data points, the underlying distribu-
tion is Gaussian and the data samples are independent. The
TEDA framework can be considered as a generalization of
the popular statistical methods, it does not depend on the
previously mentioned assumptions. Its only constraint is that
the data points can not be fully independent.

TEDA is based on two measures. The first is the accu-
mulated proximity, which is the distance of each point from
every other point in the dataset. The second measure is ec-
centricity which is the points contribution to the accumulated
proximities in the whole dataset. This is obviously a good
measure of how strongly the point is correlated to every
other point in the dataset. To give a threshold of eccentricity
most methods use Chebyshev’s inequality. It states that no
more then 1/n2 of the data can be n* away from the
mean (where denotes the standard deviation). Chebyshev’s
inequality depends on the mean and the standard deviation
of the samples, and also the number n has to be defined
earlier. TEDA provides the so called ” gap” threshold which
is analogous to it, but it looks for a difference between points
and not means.

III. METHODOLOGIES

In the next section we will describe the two methods which
we have evaluated for anomaly detection.

A. Anomaly detection based on membership

This method uses Fuzzy K-means Clustering. Fuzzy K-
means is based on the k-means method. Since k-means
method assigns each point from the dataset to a single

cluster, it can not be used for finding anomalies. On the other
hand fuzzy k-means assigns a probability to each point, the
probability shows how much it is likely that the point belongs
to one of the k clusters, this means that each point has
at maximum k probabilities (membership) assigned. If the
point clearly belongs to one of the clusters it will have one
dominant probability and the others will be close to zero. On
the other hand if the point can not be assigned easily it will
have several probabilities but none of them dominant, this
feature can be used to asses how well it fits to our previous
points.

In fuzzy k-means methods the sum of memberships for a
point is equal to 1. However in the algorithm presented here
this is not the case, and the sum of memberships will be
used to show the strength of a point being an anomaly. To
calculate this, we need to calculate the new point’s distance
from the k cluster centers, the distance metric we used was
the euclidean distance. Since we assume that the data points
are independent and they are influenced by high amount of
random processes, we can assume, according to the central
limit theorem, that the underlying clusters will conform to a
Gaussian distribution. To take this into account we scale the
distances exponentially. At the scaling we also introduce a
scaling factor b, which is a predefined coefficient, it controls
the level of scaling.

dscaled = e−
d
b

This scaling transforms each distance from the center to
a number between 0 and 1. We want however the sum of
distances to become less then 1, so another scaling is needed,
regarding the sum of the distances. Another model parameter,
alpha, must be added, which shows how stable the clusters
are. If the value of alpha is close to 1, our clusters are stable
and we are getting close to the probabilistic k-means method.

drescaled =
dscaled

(∑k
j=1 dscaled)a

Now everything is given to recognize outliers. If we sum
up the membership of each cluster we get a number between
zero and one. If the sum of the membership is close to one,
then our point fits well into the model. On the other hand
when the sum is smaller than 1/k, we have found an outlier.
If the point is not an outlier we can recalculate the cluster
centers with its help, to balance out the drift.

Although the method was created to balance out only the
shifting of the clusters, it can give an idea about the drift
too. If there are no outliers the cluster centers are slowly
updated. If there are only few outliers they can be easily
filtered out. But if there are several outliers it means that
our data is drifting, new clusters are appearing old ones
are disappearing. This change is not handled by the method
presented here, but can be assessed looking at the clustering
results.

The algorithm can be summed up as:
1) Calculate membership of each data point to each

cluster at each iteration.

2) Check if sum of membership to each cluster is greater
than 1/K.(Here K is number of clusters).

3) IF yes, then update the clusters at the next iteration.
4) ELSE ignore the data points with sum of membership

less than 1/K.
bi0 = 0.005 (more or less sensitive to distance) if b is less
more sensitive to distance, vice versa (put formula)

eucledian distance taken(squared eucledian distance)
square because we are comparing (formula)

eta0: 1 (what is eta0)
alphamin: 0.8 (keeps the membership from dropping to

zero)
- mention how the membership is being calculated
The above algorithm is illustrated by using artificial 2D

drifting data with anomaly created at a specific point of time.
See Figure (a) and (b):

Fig. 2. Fig(a) Data at iteration around 50 with no outliers

Fig. 3. Fig(b) Data at iteration around 2000 with anomalies

To cluster the above drifting data, we use random initial
centroids. If specific points are provided, they work just as
well as random points. K is the number of clusters, which
in our case is 4. This is one of the presumptions required for
our algorithm. See Figure (c):

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Fig(c) Drifting data clustered with K = 4

Here the light colored data points represent the past values
and the dark colored data points represent the current values.

Before implementing our algorithm, the anomalies as
shown in fig(b) is not detected as its membership still affects
the cluster centroid to shift. See Figure (d):

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Fig(d) Anomalies causing centroids to shift

But when the data points whose memberships are below
1/K (where K is the number of clusters) are ignored, the
clustering process considers these points as anomalies and
they are ignored from clustering. See Figure (e):

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Fig(e) Anomalies ignored by the algorithm

bi0 = 0.005 (more or less sensitive to distance) if b is less
more sensitive to distance, vice versa (put formula)

eucledian distance taken(squared eucledian distance)
square because we are comparing (formula)

eta0: 1 (what is eta0)
alphamin: 0.8 (keeps the membership from dropping to

zero)
- mention how the membership is being calculated - Steps:

- get X by running showdriftdata -

B. The ”σ gap” principle

The alternate algorithm uses a different approach. It de-
tects anomalies before clustering. The following characteris-
tics valid for each data sample are introduced:

1) accumulated proximity, π from a particular point x εχ ,
to all remaining data samples up to the kth from a
given, jth (j¿1) data sample calculated when k (k¿1)
data samples are available[2]:

πk(x j) = π jk =
k

∑
i=1

di j k > 1

where di j denotes a distance measure between data
samples, xi and x j, for example Eucledian, Maha-
lanobis, cosine, etc.[1]

2) eccentricity of a particular jth data sample calculated
when k (k ¿ 2) data samples are available (and they
are not all the same by value) [2]:

ξ jk =
2πk

jk

∑
k
i=1 πik

k

∑
i=1

πik > 0

3) Variance is defined as[1]:

σ
2
k =

k

∑
i=1

(xi−µk)
T (xi−µk)

k

4) Normalized eccentricity[1]:

ζ =
(xk−µk)

2

2kσ2
k

+
1
2k

It can be verified that eccentricity ξ is bounded between
0 and 1 and normalized eccentricity ζ sum upto 1.

The rationale is as follows. The outlier is a data
point/sample that stands out and is different from other
data samples. In the traditional nσ analysis each sample is
compared with the mean/average which is representative of
all data samples. The ”σ gap” principle proposes to analyze
the normalized eccentricity of the data samples instead of
their values. In this way, the spatial proximity to all other
data samples is taken into account by definition and pairs of
data points are compared in an accumulated and aggregated
form with all other points (through the eccentricity). If for a
pair of data points starting from the point with the highest
normalized eccentricity, x1 = x|ζ (x1) = max(ζ (xi)) there is
a σ gap in terms of their eccentricities then it is an outlier.

The σ gap condition is very intuitive and is defined as
follows:

IF(∆ζ
1,2 > n/k)THEN(x1isanoutlier)

The algorithm can be summed up as:
1) Calculate normalized eccentricity of a point.
2) Keep the point with the maximum normalized eccen-

tricity, x1 second maximum normalized eccentricity, x2,
etc.

3) Check the ”σ gap” condition.
4) If it is satisfied, declare the point x1 an outlier.
We made use of the same data[5] to replicate similar

results as in the reference paper[1], see Figure 1.

0 2 4 6 8 10 12 14

January 2014

0

5

10

15

20

25

ra
in

fa
ll

in
 m

m

Real data of rainfall (in mm) during the first 2 weeks of Jan 2014

Mean + Sigma

Mean - Sigma

Mean

Mean + 3*Sigma

Fig. 7. Fig 1 Real rainfall data from Bristol, UK, first two weeks of
January, 2014 [7,14].

As can be seen from the above graph, traditional ”nσ”
approach ignores the anomaly. But the ”σ gap” method
correctly identifies the anomaly. See Figure 2.

0 5 10 15

January 2014, date

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
o
rm

a
liz

e
d
 E

c
c
e
n
tr

ic
it
y
(

)

"Sigma Gap" principle

1/k

5/k

Zeta*

Zeta**

>1/k("sigma gap")

Fig. 8. Fig 2 The σ gap principle is illustrated on the simple 1D rainfall
data from the first couple of weeks in South-West UK.

Here,
• k is the size of the data sample.
• ζ ∗ is the point with the highest normalized eccentricity.
• ζ ∗∗ is the point with the second highest eccentricity.
We introduced an artificial data on 14th January, 2014

with rainfall changed from 3.8 mm to 19.5 mm. The σ gap
principle was still able to detect the two new anomalies.
Here, both ζ ∗ and ζ ∗∗ are anomalies. See Figure 3:

0 5 10 15

January 2014, date

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
o
rm

a
liz

e
d
 E

c
c
e
n
tr

ic
it
y
(

)

"Sigma Gap" principle

>1/k("sigma gap")

1/k

Zeta* Zeta**

Zeta**

5/k

Fig. 9. Fig 3 The σ gap principle illustrated on the simple 1D rainfall
data with artificial data on 14th January.

We were also able to detect anomalies in our own data,
but for which we had to specify the sliding window size. See
Figure 4:

0 5 10 15 20 25 30 35

Artificial data with sliding window size = 31

0

0.05

0.1

0.15

0.2

0.25

0.3

N
o
rm

a
liz

e
d
 E

c
c
e
n
tr

ic
it
y
(

)

"Sigma gap" principle on artificial data with anomaly

1/k

>1/k ("sigma gap")

Zeta*

Zeta**

Fig. 10. Fig 4 The σ gap principle illustrated on the artificial data at the
time when anomalies are created.

This illustrates that the ”σ gap” principle can also be used
for data streams with some minor changes.

IV. RESULTS & DISCUSSIONS

The two methods of detecting anomalies were evaluated
on different data sets and it was found that each method had
its own advantages and disadvantages.

The anomaly detection based on membership algorithm
can detect anomalies during clustering. Thus there is no need
to find anomalies during pre-processing of data. This can
be advantageous with live streaming data which needs to
be clustered online. But it has all the drawbacks which are
associated with clustering algorithms such as the need to
specify the number of clusters beforehand.

The σ gap principle does not need any presumptions on
the data such as used in the traditional ”nσ” approaches. It
can find anomalies with datasets as small as 3 samples[1].
But to implement in on data streams, the window size needs
to be pre-assigned. It also adds an extra step of computation.
There could also be difficulties with live data streams where
the data needs to clustered or classified online.

V. APPLICATION

To be able to showcase the properties of anomaly detection
we have decided to make a python implementation of the
TEDA framework and connect it to a data stream. For the
data stream we have decided to use a recently popular appli-
cation, object detection. Object detection is a very important
problem, since it is one of the cornerstones of automated
driving, and can be used also in CCTVs for surveillance. It
is also essential in robotics for mapping new environments,
identifying obstacles and objects the robot can interact with.

The goal of object detection is to find predefined entities in
pictures, and provide bounding boxes for their localization.
It is a step harder then object recognition, where there is
only one item to be recognized on the picture, and hence
there is no need to provide bounding boxes. Usually the
base of an object detector is a neural network trained for
image recognition. For the object detection we have chosen

Fig. 11. Object detection in work

the recently published YOLOv2 architecture. It is a 14
layer convolutional neural-network, which excels not just in
precision, but also is unrivaled in speed. It can compete in
precision with the most robust models, and the same time can
be run in real time on a low end graphics card. It is written
in C++, but there is a third party python wrapper available.
We decided to use a single simple object for the detection
task, this object is a white sheet of paper held by a person.
Later it can be used for augmented reality applications, for
example text, images or even videos can be broadcaster on
it.

For training the neural network we have carefully collected
1000 sample images from the website reddit.com . We
labeled the images manually, annotating them and assigning
bounding boxes. After careful preprocessing we have trained
several models in Google Cloud virtual machines using K80
GPUs. Training one model takes approximately 8 hours,
using transfer learning with a model trained on the COCO
dataset. Although the initial models were promising we had
to discard 600 of the pictures because they were too ambigu-
ous, and retrain the models. The resulting model is precise
when the object is standing still, but during movement the
bounding box coordinates become noisy and need to be
stabilized.

Fig. 12. A sample image from the training batch

For filtering out the noise we have chosen the TEDA
framework because of its simplicity and fast computation. On
the other hand fuzzy k-means would have several advantages
in this use case, for example the bounding box coordinates
could be inputed without formatting, and the two resulting
clusters would be the upper-left and lower-right corners. Also
with fuzzy k-means the cluster centers could be used as
final coordinates smoothing out the noise. Unfortunately its
computation cost and algorithmic complexity did not allow
for its usage.

The resulting object detection is more reliable, and much
smoother with anomaly detection. Only one parameter has
to be tuned which is n, used in the n/k threshold.

Fig. 13. Correctly detecting a sheet of paper

VI. CONCLUSION

Compared the two methodologies - replicated the results of
Angelov’s paper with our data(not done yet) - found anoma-
lies in our data with Angelov’s methods - how the methods
differ - our method finds anomalies during clustering - good
because no data manipulation or extra computation needed
before starting clustering - Angelov’s method requires ex-
tra computation before clustering - both find anomalies at
different stages - with data streams it is better to use our
method.

ACKNOWLEDGMENT
We would like to express our sincere gratitude to professor

Stefano Rovetta for all his help and support. We also want to

thank professor Fulvio Mastrogiovanni for the opportunity.

REFERENCES

[1] Angelov, Plamen. ”Anomaly detection based on eccentricity analysis.”
Evolving and Autonomous Learning Systems (EALS), 2014 IEEE
Symposium on. IEEE, 2014.

[2] Angelov, Plamen. ”Outside the box: an alternative data analytics
framework.” Journal of Automation Mobile Robotics and Intelligent
Systems 8.2 (2014): 29-35.

[3] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. ”Anomaly
detection: survey.” ACM computing surveys (CSUR) 41.3 (2009): 15.

[4] Gama, Joo, et al. ”A survey on concept drift adaptation.” ACM
Computing Surveys (CSUR) 46.4 (2014): 44.

[5] http://www.martynhicks.uk/weather/data.php?page=m01y2014
[6] Joseph Redmon, Ali Farhadi : YOLO9000: Better, Faster, Stronger

