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Abstract— The quality of the interaction between two individ-
uals depends upon not only exchange (i.e. understanding part-
ner’s intention and reacting to it), but also on how personalized
is the interaction. In this work, we have set out to accomplish
these objectives for Human Robot Interaction. For this, we have
developed a distributed and multimodal data acquisition and
interaction manager architecture aiming to enable personalized
Human-Robot Interactions. In the proposed approach, high-
level perceptual capabilities (i.e. recognizing human activity
and engagement) are performed by an Autoencoder, which
is a Deep Learning and Unsupervised Learning method. This
Autoencoder module is integrated with a facial recognition and
a dialog manager (speech recognition and speech generation)
to enable personalized interaction. We discuss the advantages
of Autoencoders over Supervised Learning methods, and how
our proposed architecture can be used to increase the duration
of interaction with a robot during unscripted scenarios. Exper-
imental validations are also performed in real Human-Robot
interactions using a humanoid robot.

Index Terms— Personalized Human Robot Interaction, Inten-
tion and engagement recognition, Deep learning, Autoencoder,
Intelligent and autonomous robots.

I. INTRODUCTION

In the past decades, robots have been serving in strictly
industrial and professional tasks (e.g. pick and place, prod-
uct inspection, welding, search and rescue and underwater
exploration) [1]. In most of the cases, these robots were
isolated from humans only allowing very basic ways of
interaction, such as the use of keyboard, teach pendant or
remote controller interfaces. However, the recent integration
of robots in “social” environments requires more usable ways
of communication [2]. This can be done by the development
of system architectures that integrate those sensory and
perceptual systems used by humans to enable “natural” com-
munication between them [2]. Moreover, to enable effective
and valuable communication these robots must be able to
initiate and maintain personalized interactions [3], [4].

In an effort towards the development of social intelligent
and autonomous robotic systems able to perform personal-
ized Human-Robot Interactions (HRI) this paper presents a
multimodal data acquisition system and interaction manager
architecture, aiming at enabling the training of machine
learning algorithms, as well as the on-line validation of these
algorithms. This data acquisition system is based on state-
of-art methods for skeleton recognition, face recognition and
natural language processing. We also present a classifier
capable of detecting the intention to engage. This classifier
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is based on an unsupervised deep learning approach denoted
as autoencoder. To the best of the knowledge of the authors
of this article, this approach has not been applied before to
enable engagement recognition.

II. RELATED WORK AND POSITIONING

Engagement is an important social ability that can be used
to improve the quality, usability and acceptability of social
robots. The term ‘“engagement” is recognized as a com-
plex concept that admits several definitions in the Human-
Computer Interaction (HCI) literature [5], [6]. In the domain
of social robots it is possible to define engagement as “the
process by which two (or more) participants establish, main-
tain and end their perceived connection during interactions
they jointly undertake” [3], [4].

The task of detecting engagement is often defined as a
machine learning problem. Classical input features for those
machine learning methods aiming at detecting engagement
have been mainly based on spatial information. Examples of
this type of data are human position, velocity, head pose, gaze
and facial expressions [7]. Most works report the use of this
data on supervised classifiers. Examples are Hidden Markov
models and Conditional Random Fields which were used in
[8], and Dynamic Bayesian Networks and Support Vector
Machines (SVM) which were used in [9]. A more recent
trend in machine learning which has dramatically improved
the state-of-the-art on areas such as speech recognition and
visual object recognition is the use of Deep learning ap-
proaches [10]. However, these approaches have been poorly
explored for engagement recognition. Classical and most suc-
cessful Deep learning models are Recurrent Neural Network
(RNN) [11] and Convolutional Neural Networks (CNN) [12],
which are also supervised methods.

Our approach differs from most of the works reported
in literature for intention and engagement classifications,
which make use of mainly classical machine learning and
supervised methods. Instead, we make use of a deep Au-
toencoder, which is a deep learning method generally used
to learn efficient data coding in an unsupervised manner [13].
Advantages of Autoencoders are as follows: i) Regular Deep
Learning Networks using CNNs and RNNs need a balanced
labeled dataset for effective classification, which is not the
case with Unsupervised Learning. The dataset is bounded to
become unbalanced as we succeed in increasing the duration
of interaction; ii) Once we have validated a model making
use of labeled dataset, there is no further need to label the
input data which is a time-consuming process; iii) For future
cases, when there is a new behaviour to be identified, it is



much easier for an unsupervised model to detect it as an
anomaly than for a supervised model to classify it. It also
deals well with cases where one has an imbalanced data-set.

III. MULTIMODAL DATA ACQUISITION AND
INTENTION/ENGAGEMENT RECOGNITION SYSTEM

The proposal for a multi-modal data acquisition and inter-
action system is represented in Fig. 1. The system is divided
into three main sections as follows:

o Human Input: represents the human motion and activ-
ities before/during/after the interaction with the robot.

« Intention/engagement classifier: represents the skele-
ton data acquisition part of the system. This data is
labeled and used to create an autoencoder for further
classification of the human interaction behavior.

o Integrated Interaction: represents our proposal to
make the robot recognize and react with personalized
interactions. It includes the devices and processing used
for a personalized interaction with the human. This
system includes a web-camera for facial recognition,
a microphone for speech recognition, a dialog manager,
a tablet for displaying dialogues and a humanoid robot
that interacts with the humans.
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Fig. 1: Our proposal for intention and engagement recogni-
tion for HRI: Overview of a general setup

A. The facial interaction (facial recognition system)

By using facial recognition the robot is able to adapt
its behaviors based on the recognized users. The procedure
applied to perform face recognition consists of three steps:
face detection, face verification and face classification.

In the face detection step, the algorithm explores an image
and decides if there is any face in that picture. It is done by
segmenting and separating the faces from other background
objects. For this step, we use a method based on Histogram
of Oriented Gradients (HOG) [14], which is implemented in
off the shelf in [15].

In the face verification step which is essentially a 1:1
problem, where one recognized face must be associated with
a specific Name/ID. This process requires to deal with cases
where the faces are at different angles or partially turned
away. For this, each image is wrapped such that the eyes and
lips are always in the same place in the image. To achieve
this, a method to estimate face landmarks (i.e. specific points
that exist on each face) is needed. However, this process
could be highly costly in terms of processing time as one
can have a database of N number of people. This step is
a 1:N problem. In order to reduce computational cost, the
algorithm needs to use only few basic landmarks from each
face. To find which measurements are most important Deep
Learning techniques are applied.

A Deep Convolutional Neural Network is trained to gener-
ate a specific number of landmarks for each image. The train-
ing process for this Deep Learning model is described below:
i) Provide an image with a face of a known person (Image-
1), ii) Provide another image of the same person (Image-
2), iii) Provide an image of a completely different person
(Image-3). The algorithm tweaks the weights of the Neural
Network such that the measurements generated for Image-
1 and Image-2 are closer compared to the measurements
generated to that of Image-2 and Image-3. As these steps
are repeated for different quantity of images. The network
generates the specified number of measurements for each
person. These measurements are designated as embeddings
in this machine learning. Now, the pre-trained model is used,
and the own models are trained on top of this with our own
images data set. This is described as the Transfer Learning.

Finally, the face classification step is required to find
the image, in our registered user database with the closest
measurements to our test image. This can be achieved with
any basic machine learning classification algorithm. In our
work, we have used of One-Shot Detection algorithm and K
Nearest Neighbours (KNN).

B. The dialog manager (speech recognition)

The speech plays an important role in the interaction
between humans. The Pepper robot presents a natural afford-
ability of speech interaction i.e. due to its humanoid features
when users see the robot they naturally assume that they can
speak with it. Due to this, we built a speech interaction sub-
system shown in Figure 2. The processes involved in this
sub-system are described bellow:
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Fig. 2: Speech Recognition to Dialogflow Interaction

Display of Pepper

Dialog interaction: An external microphone device is used
to perform the data acquisition in the Pepper robot, due to
the best quality of the sound with this device compared to the
microphone already installed in the robot. This sound data is
processed and applied to recognize the speech by the Speech
Recognizer module. For that, the python speech recognizer
library [16] is used.

Interaction with a dialog displayed by the tablet interface:
In order to provide feedback to the user, the output of the
Speech Recognizer and the robot’s speech are both displayed
on a tablet attached to the robot. An example of the provided
interface is shown in Figure 3 where the text marked in gray
bubble is the “Live-Subtitle”” of what the robot “understood”,
and the text in blue bubble shows the response of the robot.
This figure presents how the robot deals with errors in
the speech recognition. On the one hand in figure 3 (a)
the user intended to say “Hello Pepper”, but the Speech
Recognition using Google Speech Recognition as backend
interpreted it as “Hello Bigger”. However, the robot was
able to “understand” the general meaning of the phrase and
responds correctly. On the other hand in figure 3 (b) the
speech recognizer’s output was not understood by the dialog
manager at all. In this case, the robot responds with a clear
message that it does not understand and explains what it is
capable of talking about.

Hawaii.

hellobigger Sorry | can't do that. | can talk about our
Hi. What do you want to talk about today? lab, offer you your horoscope, tell you
stories or jokes. Or have a simple

conversation with you.

(@)
(b)
Fig. 3: Examples of the dialogue feedback to the users with
two different types of failure (a) that doesn’t affect the flow;
(b) that affects the flow of interaction

Chatbot Integration: In order to understand the general
meaning of the sentences of the users we use a Natural
Processing Language tool that enables the development of
advanced chatbot interfaces. This tool denoted as Dialogflow
acts as the main engine for our Speech Interaction section.

Figure 4 represents the Dialogflow sections as: Invocation,
User Says, Responses and Entities. Entities are useful in
cases where we need to gather information from external
sources using a WebHook. These services can be related
to weather, time, finance, etc. The Dialogflow agent is
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How can | help you?
Hil

Hello! How are you?

Wassup!
How was your day?
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User Says Response

Entities

Fig. 4: Structure of the Dialogflow functionalities

activated with an Invocation. This invocation can be the
Face Recognition, Person Detection or using a Hot Word
for activating the system. In our scenario, it includes Face
Recognition or a simple greeting from the user. Once the
agent is invoked, the user input is matched with any of the
numerous Intents. For example, for a general greeting, the
intent matches the user speech with its User Says section
which contains various greetings or if it is closely related
to the examples in this section. If matched, it provides
randomly one of the responses recorded in the Responses
section. Another example is shown in Figure 3 (a), where
the recognized speech is matched with an appropriate Intent
defined as: smalltalk.greeting.hello. In cases where the user
speech is not recognized, the Dialog Manager sends it to
a default Fallback Intent where the agent replies with a
default response that it does not understand what the user is
trying to say or it does not have the capability to complete
the user’s request and specifies what it can do. An example
of this case is shown in figure 3 (b).

C. Features for intention and engagement recognition
(Skeleton tracking)

For Engagement Classification, we refer to the ranking of
features provided in [17]. We also use the same proposed
device, Kinect version 2.0, which is a video game oriented
camera widely used in robotics research to perform 3D scan-
ning of environments and 3D skeleton tracking. However,
this last feature is only available in the official Software
Development Kit (SDK), which is only Windows supported.
Taking inspiration from [17], we made use of the features
shown in Table I in our work.

In total we have 55 features. We use these features for
the training of the proposed Engagement Classifier Model.
Data collected, it is hand-labeled. For this process, we match
the time-stamp from the Kinect sensor data and the time-
stamp on the video camera. Due to this unbalanced dataset,
it can be difficult for the models to recognize patterns of
the underrepresented classes. Although there are techniques
available for dealing with such imbalanced dataset such
as SMOTE (Synthetic Minority Over-sampling Technique),



No. | Name Unit Description
1 face_engaged [0; 1] | If user is looking at Kinect
2 face_glasses [0; 1] | If user is wearing glasses
3 face_happy [0; 1] | If user is smiling
4 face_lefteyeclosed [0; 1] | If left eye is closed
5 face_righteyeclosed | [0; 1] | If right eye is closed
. . If user is looking away
6 face_lookingaway [0; 1] from Kinect
7 face_mouthmoved [0; 1] | If user’s mouth is moving
8 face_mouthopen [0; 1] | If user’s mouth is open
9 face rad pitch, roll, yaw angles
10 shoulder_rot rad Rotation of the shoulder
11 elbow _left m X, ¥, Z positions
12 elbow_right m X, Y, Z positions
13 head m X, Y, Z positions
14 hip_left m X, ¥, Z positions
15 hip_right m X, Y, Z positions
16 neck m X, Y, Z positions
17 shoulder_left m X, Y, Z positions
18 shoulder_right m X, Y, Z positions
19 spine_base m X, y, Z positions
20 spine_mid m X, Y, z positions
21 spine_shoulder m X, Y, Z positions
22 wrist_left m X, ¥, Z positions
23 wrist_right m X, Y, Z positions
24 pedes_pos m X, Y, Z positions
25 time_stamp ms Kinect Device Time

TABLE I: List of features used and their descriptions

under-sampling majority classes and over-sampling minority
classes, we risk losing useful data for effective classification
of data.

To deal with such imbalanced dataset, we proceed with
Unsupervised Deep Learning. In particular, we make use of
Autoencoder to learn efficient embeddings in our data. Once
data-labeling is completed, we proceeded with Data Visual-
ization, to observe if we could spot some variations in the
data for our four classes, namely: Approaching, Interacting,
Leaving and Uninterested. An example is shown in Figure
5. Before visualization, the features are first normalized.
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Fig. 5: Data visualization of the human shoulder rotation
from Kinect

IV. THE INTENTION AND RECOGNITION CLASSIFIER,
TRAINING AND CLASSIFICATION

For the intention and engagement recognition an Autoen-
coder model was created. Due to the unsupervised nature of
this method, the input data does not require any labels while
training. Instead in the output layer, the autoencoder tries to
generate data that closely matches the input. In this work,
the model is trained on high dimensional human skeleton
data. Then we use the latent compressed data in latent space

for visualization. In future work, the decoder part would be
chopped off and the encoder would preserved for further use
as input to a clustering algorithm.

Autoencoders generally consist of two parts: an encoder
and a decoder. The encoder reads the input data and com-
presses it to a compact representation. The decoder reads this
representation and recreates the input. The whole process is
to learn the identity function with minimum reconstruction
error. Once the model is trained with minimal reconstruction
error, the latent space i.e. the compact representation of the
input is used for the classification.

Network Architecture: Our network is constituted by the
following: a) The encoder is a RNN that takes a sequence
of input vectors; b) The encoder to latent vector is a linear
layer that maps the final hidden vector of the RNN to a latent
vector; ¢) The latent vector to decoder is a linear layer that
maps the latent vector to the input vector for the decoder;
d) The decoder is a RNN that takes this single input vector
and maps to a sequence of output vectors.

V. EXPERIMENTAL SETUP

The robot used for the implementation of the system is
a Pepper robot and it was equipped with the following
extra devices to extend the capabilities for the complete
engagement interaction as shown in Figure 6.

Fig. 6: Experimental Setup with Pepper Robot

The main data collection device i.e. the Kinect Sensor is
placed right behind the Pepper robot’s head; the IP Webcam
is placed on top of the Kinect sensor which is used for
Facial Recognition. The android tablet is fixed on top of
Pepper’s inbuilt tablet. The microphone is also attached to the
same tablet, it is connected to the Laptop with i3 processor
running Linux OS. The IP Webcam is also connected to
the same Laptop through either Wi-Fi or Ethernet cable.
The Pepper robot’s Text to Speech or Animated Text to
Speech receives its commands from the same Laptop device.
The Kinect device is connected to another Laptop with i7
processor running Windows 10 OS. This was necessary as
the Kinect v2 requires Windows 10 OS with a dedicated
USB-3 port. The communication between all these devices
is accomplished using NEP [18], which is a cross-platform
robot programming framework we developed to enable inter-
process communication between nodes in some of the most
popular programming languages and operating systems by
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Fig. 7: Autoencoder for the recognition during the HRI
integrated in the proposed overall system (with PCA: 55-D
input features compressed to 2-D for visualization)

using different middlewares such as ROS and ZeroMQ.
There is another digital camera to record the interactions
for further analysis.

The subjects of the experiment had the following char-
acteristics: English speaking; Aged between 20 to 30; Able
bodied; Persons studying or working on Robotics.

VI. RESULTS AND DISCUSSION
A. Facial recognition

In the initial experiments we used One-Shot Detection as it
would be faster to add new persons to our database, however
its accuracy was limited to apply for the face recognition.

We implemented the K Nearest Neighbours (KNN) algo-
rithm. To proceed with KNN, we collected image-data of
all the lab-members. The images were taken from a cell-
phone camera in burst-shot mode such that 100 images each
were taken quickly for each subject. In data collection one
needs to be careful and foresee the environment where the
actual prediction would take place. Since the early tests were
being held in the same place, we collected the images in
the place itself with all the reflective surfaces present. Also,
the frame of taking images is important since the Pepper
robot is much shorter than average humans. For the Face
Recognition model, we used the external IP Webcamera.
The use of this camera provides flexibility to position it as
per our requirements. It means that there are part of the
interactions where the robot moves its head away from the
user, or to a general direction that is meant to be facing.
This can cause problems for future interactions if the robot
head is not re-positioned each time. In addition, the use of an
IP webcamera using the tools such as OpenCV provides us
the flexibility to be robot independent. Also this hardware is
more accessible in terms of data streaming than the hardware
on the robot. For the interaction classifier, the autoencoder
learns the identity function, so the sequence of input and
output vectors must be similar. Every output is a tuple
of a mean y and standard deviation . Let this p and o
parameterize a Gaussian distribution. Now, we minimize
the log-likelihood of the input under this distribution. We
trained this model using backpropagation into the weights
of the encoder, decoder and linear layers [19]. We run the
recurrent Autoencoder with a 20-D latent space i.e. the 55-D
input features are compressed to 20-D by the Autoencoder.
These 20 dimensions are plotted to 2-D after applying PCA
to compress them further for visualization purpose only. In

the Figure 7, the different classes can be easily visualized
with PCA. We can also notice that some of the data points
from Leaving and Approaching classes are presented in the
Interacting cluster. This can be due to the resolution of the
time-stamp when hand-labeling the data. As the time-stamp
of video recording only had resolution up-to seconds, some
of the data for Inferacting class might have been wrongly
classified as Approaching or Leaving.

B. Interaction Time Comparison

After executing the experiments of the detection of en-
gagement, we now explore how we approached increasing
the duration of interaction. For the experiment interactions,
the participants were not given explicit directions on how
to interact with the robot as we wanted to record natural
interactions. One small direction given to the participants
was to approach the robot and say a greeting for example,
“Hello” in cases where the Face-Recognition block was not
active. The training set comes from the data collected by
the Kinect sensor and video recording of experiments with
a camera. The time stamps on the camera and Kinect sensor
were synchronized. We obtained time-series skeleton data
from the Kinect sensor and it was hand-labeled using the
video recordings. We recorded 4 interactions without the
tablet display, and 6 interactions with the tablet display to
see its impact on maintaining the interaction. As we only
had a limited number of English speaking participants, the
experiments could not be repeated without giving away the
novelty of first time interaction. We compare only the mean
interaction time between the two groups, and change in
the interaction time for the two participants B and D who
participated for both scenarios. Figure 8 and 9 represent
the interaction time with and without tablet display. Within
the two graphs, with the tablet display, the interactions
lasted longer. As we can see, from participant ID B and
D who participated in both scenarios, the interaction times
nearly doubled when Tablet modality was introduced. It was
reportedly due to the help provided by the display to clearly
indicate the robot’s current status and “live subtitles” shown
in real time. This clearly indicates that using the tablet as
an additional mode of interaction helps for increasing the
interaction time when the speech recognition and dialogue
generation have a significantly high number of failures.

Also in Figure 9 we notice participant IDs G and H
interacted considerably longer than other participants. This
could be due to the fact that the two participants had more
frequent physical interactions with robots in their daily lives.
As the chatbot, explained in sub-section III-B, was improved
iteratively after each interaction and these two interactions
were chronologically the last two interactions, it could sig-
nify that the chatbot’s overall conversational abilities were
better in latter stages.

C. Observations and discussion

Some important points for the intention and engagement
recognition described by the users as shown below:
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Interaction time: There was a considerable importance
in the time delay during the interactions as observed and
reported by the users. These delays were mainly caused
by the robot hardware and internet connection which was
essential for the speech interaction.

Robot feedback response for the user (tablet display):
As reported by the users, they had to depend a lot on
the feedback from the display to effectively interact with
the robot. For example, during a delayed response due to
low internet connection or faulty speech recognition, the
tablet display would notify the user to wait as processing
is undergoing. In the absence of this modality, the user
would often get frustrated and be unaware if the robot had
recognized their speech or not. The tablet display was mainly
used as there is a lack of universal indicators to show the
present status of the robot. As seen in our experiments, the
robot visual feedback helped to increase the duration of the
interaction.

Robot personalized with face recognition: The facial
recognition is a crucial part in creating a personalized inter-
action with the user. During the experiments, it was clearly
observed that upon successful facial recognition by the robot,
the users reacted in a positive manner often praising it for
recognizing them correctly, which impacted on the overall
interaction.

VII. CONCLUSIONS AND FUTURE WORK

The multimodal data acquisition and intention/engagement
recognition system for HRI was developed and successfully
implemented with the Pepper robot. The system was tested
with users and their engagement was measured during a
free interaction with the robot using verbal communication.
The proposed architecture is constituted by human inputs,

intention/engagement classifier and integrated interaction.
In order to classify and analyse the intention/engagement
an Autoencoder was modeled and implemented. The most
important points from the users evaluation were noted as
being the interaction time, the robot feedback to the user,
and the robot personalization with the face recognition.

In future work, the system will be extended in the classifier
model as a feedback response involving a decision making
module for a more personalized interaction.
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