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ABSTRACT
Deep convolutional networks have dominated advances in object detection and grasp-position
estimation using computer vision. The data-collection process for these networks is, however, time-
consuming and expensive. We propose an automatic data-collection method for object detection
and grasp-position estimation using mobile robots and invisible markers. Our method offers clear
advantages over manual data annotation and synthetic data generation in terms of time con-
sumption, cost, consistency, and similarity to real-world data. We compared data generated with
our method against synthetically generated data to show how it can affect the robustness of
the deep learning model when inferred under real-world conditions. We also conducted a com-
parison between our method and manual data-collection and synthetic-data-generation methods
and demonstrated how our method could be used for data collection of asymmetric objects and
key-point estimation tasks.
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1. Introduction

Computer vision methods using deep convolutional net-
works have been influential in solving some of the
major problems in robotic manipulation with object
detection [1–3], grasp-position-estimation [4–6] and
six-dimensional (6D) position estimation [7–9]. These
supervised learning methods rely on reliable and high-
quality data [6,10].

Data collection is a crucial process for building accu-
rate models that can perform robustly in real envi-
ronments. However, manual data collection is a time-
consuming and expensive process.

The data-collection process for object detection
involves two steps. The first is image collection and the
second is annotation. In the image-collection step, one
needs to ensure that there is a large variation in the posi-
tion and orientation of the object in the images. Objects
placed in the same position in every image can make the
model overfit to the particular position and orientation
and less robust when it is placed at a different location. In
the annotation step, the annotator marks the bounding
box of the object in the image to specify the location of the
object in the image. This process can be highly laborious
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depending on the size and shape of the object, the num-
ber of objects in the image, and tolerance in annotation
accuracy. The annotators need to have domain knowl-
edge of the objects they are annotating in terms of how to
distinguish between similar-looking objects. Similarly for
grasp-position annotation, one needs to have the domain
knowledge of the appropriate grasp locations for each
object and knowledge of which end-effectors would be
used for grasping.

Certain approaches use outsourcing to tackle this task
in which people can be hired to annotate image datasets
for a fee [11–14]. This gives rise to another problem,
which is quality checks. When the annotation is out-
sourced, several annotators of varying skill levels are
employed. Because the hired annotators have varying lev-
els of skill and can annotate the same objects in different
ways, these annotated datasets must be quality checked.
Another issue is that confidential data cannot be out-
sourced to such services for annotation [15]. For accurate
object detection, it is also important that the training data
be representative of the real-world data the model might
encounter, which makes it necessary to add similar noise
in the training data as well.
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Figure 1. Automatic data collection for object detection and grasp-position estimation with mobile robots and invisible markers.

To solve these problems, we propose the automation
of the data collection and annotation process using (1)
mobile robots equipped with novel tilt platforms and (2)
invisible markers. Mobile robots transport objects from
one location to another. Invisible markers visible only
under ultraviolet light are used tomark the grasp position
of the objects. The concept of our data-collectionmethod
is shown in Figure 1.

Object grasping is a crucial step in robotic manipula-
tion in various applications. It entails (1) identifying an
object in a given image and (2) determining the posi-
tion fromwhere the robot can dependably grab the object.
Objects are of various shapes and sizes in a general grasp
estimation problem. Additionally, the scene is typically
cluttered and is shot from an arbitrary viewpoint. A suc-
cessful grasp depends on correctly identifying the object
and choosing the proper position to grab it from, depend-
ing on the type of end-effector. In an industrial setting,
the camera is usually fixed in a top-down view above the
objects of interest. The types of objects are limited, and
an appropriate end-effector is chosen, which can grab
the objects reliably. The scene can also be constrained
to increase the rate of successful grasps. For example, to
ensure better detection, one might regulate the lighting
conditions and only permit objects with specific shapes,
like circles. To ensure that the end-effector can reliably
grasp the objects, one can also restrict the size and weight
of the objects.

We focus on data collection for the object-detection
and grasp-position-estimation tasks for a commercial
dishwasher system [16]. In our vision system, the cam-
era is fixed in a top-down view above the objects. This is
a conventional setup in industrial applications.

Our setup of a commercial dishwasher system is
shown in Figure 2. This system has two main objec-
tives: (1) to process numerous dishes in a short amount
of time to prevent any bottlenecks in restaurant opera-
tion and (2) to pack the dishwasher rack efficiently to
maximize the number of dishes washed in each cycle.
Our scene is less cluttered than a regular bin-picking
problem as it is a commercial human-robot collabora-
tive dishwasher system used to automate dishwashing in
restaurants. Maintaining close to real-time constraints in
a commercial system is essential to avoid ambiguity and
process failure. To achieve the above goals, the dishes are
placed upside down by human assistants and the dishes
are picked up from the center so as to pack the rack effi-
ciently. In addition, since we use a single suction gripper
in our application, the bottom center of the dish is the
only positionwhere the suction can work without failing.

The symmetric circular shape of the dish allows for
a simpler 2D bin-packing method, which is out of the
scope of this paper. The dishes need to be classified for
sorting after dishwashing and to differentiate which dish
needs to be washed with a brush and which one needs to
be washed with water only. Although our target objects
in this work have a symmetric shape, we show how this
method can be used for asymmetric objects as well.

In Section 2, we describe relatedwork and briefly com-
pare them with ours. In Section 3, we give details of the
proposedmethod, data-collection setup along with hard-
ware used, and invisible markers to annotate grasp posi-
tion. In Section 4, we describe the experimental setup of
comparing the data-collection methods and the results.
Finally, we provide our conclusion based on the tests.
To the best of our knowledge, our proposed method of
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Figure 2. Commercial dishwasher system [16]. (a) Dishwasher system robot setup. (b) Pick and pre-wash dishes before placing them on
the rack. (c) Sort and place the washed dishes.

using mobile robots and invisible markers has not been
applied before to collect data for object detection and
grasp-position estimation.

2. Related work

Manual data collection and annotation have several prob-
lems, i.e. time-consuming, expensive, requires skill, and
can contain human errors. To overcome these problems,
there are several methods of automatically collecting and
annotating image datasets. We briefly describe some of
them in the following subsections.

2.1. Data collection

2.1.1. Methods using robot arms
Certain methods use manipulator robot arms to auto-
mate the process of data collection [17–19]. The manip-
ulator robot arms are used to change the camera position
and angle to acquire images of the objects from various

perspectives. The objects are stationary throughout the
data collection process.

Although the robot arms help in providing diverse
perspectives and a consistent dataset compared with
manual methods, they are limited by the reach of the
robot arms. These methods also require human super-
vision and are not fully autonomous as the robot arm
trajectories can encounter singularities and joint limits
while moving in their environment which need to be
resolved.

The high cost of amanipulator robot can also be detri-
mental when used for data collection. Fang et al. and De
Gregorio et al. used a Universal Robots UR5 robot arm
with an average cost of around 30,000 USD [17,19]. Ren-
nie et al. used a Motoman SDA10F robot, which can cost
upto 100,000 USD.

2.1.2. Synthetic-data-generationmethods
There are methods that use accurately textured 3D mod-
els of the objects to generate a labeled synthetic dataset
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[20–23]. These methods use physics simulation environ-
ments to change the object position and orientation. The
background can also be easily modified and one can use
domain randomization tomake the model robust against
different backgrounds during inference [21].

These methods can be especially helpful for annotat-
ing the 6D pose of an object, which ismuchmore compli-
cated compared with 2D annotation. For 6D annotation,
one needs to (1) draw a 3D bounding box around the
object and (2) indicate the angle of orientation with a
normal vector with respect to the camera plane.

Synthetic-data-generation methods require highly
accurate 3D models of the objects for high-fidelity data.
The drawback of using synthetic data is that the mod-
els trained using only synthetic data do not perform well
during inference when tested on real data [24]. Poorly
constructed 3D models can lead to further increasing
the Sim2Real gap. Synthetically generated data have been
known to increase detection accuracy when combined
with a sparse real dataset [25].

2.2. Annotation

2.2.1. Bounding-box annotation
Deep learning methods and pre-trained object detectors
have been used to reduce the annotation time of bound-
ing boxes [26–28]. These methods use object detectors
pre-trained on a broad variety of data and later fine-tuned
with manually collected data. One major drawback with
suchmethods is that one needs to train an object-detector
model first that would be able to accurately annotate the
new data.

Certain methods annotate the first image manually,
then, using a well-calibrated camera, use camera poses to
project the bounding boxes on the rest of the images cap-
tured in that sequence [17,19]. De Gregorio et al. used an
augmented reality pen to manually outline virtual boxes
around the target objects for the first image [17]. The
objects in the scene need to be stationary and the camera
moved using a robot arm with these methods.

2.2.2. Grasp-position annotation
Annotating the grasp position has been tackled using
synthetic-data-generation methods [29,30]. However, as
mentioned above, the visual domain gap can lead to low
grasping accuracy when inferring on real images.

Other methods combine real-world images with com-
putation in synthetic environments [19,31]. Fang et al.
used high-quality meshmodels of objects and downsam-
pled them to obtain a large number of grasp candidates.
These candidates are then filtered to fit a parallel plate
gripper so there would be no collision and no empty
grasp.

Although this method generates a large number of
possible grasp positions for an object, it does not account
for planning the placement once it has been picked up.
This is essential in an industrial setting, where pack-
ing as many objects as possible in a small space is
crucial.

Other methods use invisible markers that are visible
under ultraviolet (UV) light and invisible under regular
(white) light [32,33]. Takahashi et al. used invisiblemark-
ers for annotating segmentation masks of deformable
objects [33].

3. Automatic mobile robot data collection setup

In this section, we describe the system setup of our pro-
posed data-collection method.

3.1. Proposedmethod

In a fixed camera setting, the view of the object can
change considerably as its position with respect to the
camera changes. For example, a spherical object, a semi-
spherical object, and an inverted semi-spherical object all
appear as a circle when the objects’ centers align with the
principal axis of the camera. However, the appearances
differ greatly when they are at the edge of the camera’s
field of view, i.e. away from the camera center. It can
be enormously expensive to manually capture images of
objects for every possible position under the camera’s
field of view.

Our method enables data collection and annotation
for both object-detection and grasp-position-estimation
tasks by usingmobile robots and invisiblemarkers. There
have not been any methods that have explored the use of
mobile robots for data collection.

Using small mobile robots enables us to automate
moving the objects and capturing the object’s image at
every possible location inside the camera’s field of view.
Our approach allows greater control over the objects,
which in turn allows greater control over the scene. This
enables us to randomize the scene and fill in any data gaps
in a specific configuration.

Invisible markers enable us to automate the annota-
tion process. They are visible only under UV light and
invisible under white light. This enables us to extract
the invisible marker’s position in UV-light-lit images
and annotate the white-light-lit images accordingly. The
invisible markers are necessary since we do not want the
markers to affect the appearance of the dish. Using visible
markers can change the appearance of the dishes, and we
would need to use the markers during inference as well,
whichwould not be practical in a commercial dishwasher
system.
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By adding noise during data collection with random
lighting and a fog generator, we are able to generate data
close to what robots might encounter in the real world.
Since our application is a commercial dishwasher sys-
tem, we set up the environmental noise as seen at the
dishwashing station in a real restaurant.

3.2. Data-collection setup

Our data-collection setup is shown in Figure 3.

3.2.1. Camera and linear guide setup
We use a ZED-M 3D camera, but our method requires
only RGB images. The camera has a high capture rate of
30 frames per second. This enables us to capture multiple
images of an object under motion while seemingly at the
same location.

The camera is placed on a linear guide, which enables
us to move the camera vertically to change the height
between the platform and camera. Moving the camera
on the z-axis continuously during data collection enables
us to simulate real conditions under which the camera
height to the platform can vary.

3.2.2. Mobile robots
Mobile robots are used to carry objects over a platform
under the camera’s field of view. We surveyed multi-
ple mobile robots and selected E-puck2 and Khepera IV
robots for their capabilities of accurate locomotion and
control with Bluetooth or Wifi.

Khepera IV is able to bear a payload of up to 2 kg,
which is sufficient to carry stacks of dishes. Although
E-puck2 does not have a specific payload capacity, it is
capable of carrying objects of weights up to 150 g.

The size of the robotwas also an important factor since
we needed the robots to be hidden in the top-down view
of the camera. Figure 4 shows the mobile robots we used
along with the dishes. The robots were programmed to
cover every position on the platform.We used guard rails
to prevent themobile robots from falling off the platform.

3.2.3. Invisiblemarkers and lighting setup
We used the same invisible ink mentioned in a previous
study [33] to mark the grasp position of the object in our
application.

Our lighting environment consisted of USB-powered
RGB light-emitting diodes (LEDs) for the white-light
environment, and UV LEDs for the UV-light environ-
ment. The data-collection platform was covered with a
tarp to block any external light. Since we used inexpen-
sive UV LEDs, there was a visible violet hue to the UV-
light-lit images. However, only the invisible-ink-marked
point stood out in the images.

Table 1. Three-axis platform specifications.

Elements Technical information

Microprocessor Raspberry Pi ZeroW
Language Python
Communication 802.11 b/g/n wireless LAN
Sensors MPU9250
Motors RDS3115MG x3
Tilt angle limit −15◦ to+15◦
Power supply 5V

We controlled the lighting using a programmable USB
hub. This enabled us to switch between white light and
UV light at high speeds programmatically for every frame
captured with the camera.

3.2.4. Three-axis platform
Using only mobile robots would restrict the object’s ori-
entation to the XY plane. To overcome this, we designed
and built a three-axis platform that can be placed over the
mobile robots, as shown in Figure 5. The platform enables
us to tilt the objects placed on it in any direction with a
maximum tilt of up to 15◦.

One caveat of our three-axis platform is that due to
its size, it can be placed on top of the Khepera IV robot
only. Thus, it restricted our ability to collect data using
it for objects which are smaller than this robot. Table 1
provides the technical specifications of our three-axis
platform.

3.2.5. Environmental noises
Flashlights were used to add random light noise to sim-
ulate reflections and harsh lighting conditions of a real-
world environment. We used a fog generator to add
smoke noise to the images. This is representative of a
real-world dishwasher system, where the steam from the
dishwasher can partially occlude the objects under the
camera.

The data-collection setup was modular. The compo-
nents could be replaced or new components added to
vary the environmental conditions. Adding the above-
mentioned noise enabled us to train an object-detection
model with realistic data exceptionally robust against
real-world conditions. Figure 6 shows a sample of our
data with environmental noise.

3.3. Data-collection and annotationworkflow

Figure 7 shows the workflow of our data collection and
annotation process.

3.3.1. Pre-setup
Wefirst painted the object’s grasp position using an invis-
ible marker. We marked the bottom center of the dish
with this marker. The dish was then placed on a mobile
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Figure 3. Automatic data collection setup: mobile robot setupwith lighting environment for invisiblemarkers. (a) Data collection setup.
(b) White light environment. (c) UV light environment.

robot depending on the size of the dish. We move the
robot across the platform inside the camera’s field of
view.

3.3.2. Image capture
At every location, we captured two images of the object,
one under white light and the other under UV light. This
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Figure 4. Mobile robots with dishes. (a) Khepera robot. (b) Khepera with dish side-view. (c) Khepera with dish top-view. (d) E-puck2
robot. (e) E-puck2 with dish side-view. (f ) E-puck2 with dish top-view.

Figure 5. Three-axis platform. (a) Three-axis platform. (b) Three-axis platform with dish. (c) Khepera with a three-axis platform.

process was very rapid with the help of a high-frame-rate
camera capture and lighting environment that changed
alternately every frame. This enabled us to capture a total
of 2300 images in around 140 s. The 2300 images con-
sisted of 1150 pairs of white-light-lit and UV-light-lit
images.

Since the speed of the mobile robots was kept low to
avoid any collision or damage, and the capture rate of the
camera was high, we captured many image-pairs when
the object was in the same location. Thus, after delet-
ing any duplicate image-pairs, we obtained around 300
image-pairs in 140 s. We choose to filter out the dupli-
cate image-pairs in the post-processing step rather than
delaying the image capture because carrying out post-
processing is much faster, i.e. it did not increase our
cycle-time for data collection, and the time required for
the process was negligible.

3.3.3. Grasp-position annotation and bounding-box
annotation
The white-light-lit image is the primary image without
annotation. The invisiblemarker clearly stands out under
the UV light. Its pixel coordinate is easily obtained by
thresholding the RGB value of the color of the marker.
This coordinate was used for the grasp-position annota-
tion in our use case.

We then drew a square bounding box with the grasp-
position coordinate as the center, by using the following
equation:

(xTL, yTL) = (xc − w/2), (yc − h/2)

(xBR, yBR) = (xc + w/2), (yc + h/2) (1)

where (xTL, yTL) and (xBR, yBR) denote the top-left
and bottom-right coordinates of the bounding box,
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Figure 6. Environmental noise.

Figure 7. Automatic data-collection and annotation workflow.

respectively, and (xc, yc) is the center of the bound-
ing box. The width and height of the bounding box
are denoted by w and h in the equation, which can be
adjusted according to the size of the object. Although the
bounding box drawn using the above equation is impre-
cise and does not fit the object tightly, it performed well
to classify the dishes.

3.4. Other applications

Althoughwe considered only symmetric bowls due to the
constraints of our target application, our data-collection
setup can be used to collect data for asymmetric objects
as well, as shown in Figure 8.

Invisible markers can also be used to annotate key
points of an object, as shown in Figure 9. These key points
can be used to estimate the orientation of the dish with
respect to the camera, which we did not explore in this
study.

Table 2 provides a comparison of our method against
the methods presented in Section 2 in terms of cost,
annotation and time required for data collection. De

Gregorio et al. took around 7.2 s to capture an image
[17]. We estimated the time required for data collection
by the other two methods [18], and [19] by simulating
robot motion and the average time for the robot to cal-
culate inverse kinematics and move to a new position
for image capture. For estimating the time required for
annotating objects with Rennie et al.’s method [18], we
used the data provided by Su et al. [14], i.e. an aver-
age of 50 s for drawing one bounding box per image.
Similarly, we extrapolated the time required for 6D anno-
tation with De Gregorio et al.’s method [17] to estimate
the time required to annotate images with Fang et al.’s
method [19].

4. Experiments

To check the efficacy of our data-collection method, we
conducted two comparison tests.

We first trained an object-detection model with the
data collected with our method. We trained another
instance of the same model with synthetically generated
data. The test data in both cases were hand-annotated
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Figure 8. Data collection of objects of various shapes.

Figure 9. Key-point data collection with three-axis platform.

data. We further expanded this comparison by training
an instance of themodel with both the data collectedwith
our method and synthetically generated data. We com-
pared themean Intersection over Union (IoU) for all dish
classes between the three instances of the model.

We then compared the following three data-collection
methods: (1) manual data collection, (2) synthetic data
collection, and (3) automated data collection withmobile

robots and invisible markers (proposed). The metrics
of comparison were procedure of data collection and
annotation, cost, and time required.

4.1. Object detection performance comparison

The objects for detection were dishes of various classes
shown in Figure 10. We randomly selected twelve dishes
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Table 2. Comparison of data-collection methods in terms of robot cost and annotation time.

Robot Cost (USD) Annotation Annotation method
Time for data collection and
annotation of one image

De Gregorio et al. [17] Universal Robots
UR5

30,000 2D/6D AR pen + Camera projection
(Semi-automatic)

Data collection: 7.2 s. Annotation:
∼ 300 s for first image in sequence.
Negligible time for following
images.

Rennie et al. [18] Motoman SDA10F 100,000 6D Human annotation (Manual) Data collection: 5–10 s. Annotation:
∼ 50 s.

Fang et al. [19] Universal Robots
UR5

30,000 6D Human annotation + Camera
projection (Semi-automatic)

Data collection: 5–10 s. Annotation:
∼ 300 s for first image in sequence.
Negligible time for following
images.

Mobile robot and invisible
marker data collection
(Proposed)

Khepera IV and
E-puck2

5,000 2D Invisible markers (Automatic) Data collection+ Annotation : 0.4 s

Figure 10. Dish classes.

Figure 11. Mobile robots assigned to dish based on its dimensions and weight.

from the commercial restaurant dishes available to us.
Figure 11 describeswhich robotwas assigned to each dish
according to its dimension and weight.

4.1.1. Data collected usingmobile robots and
invisiblemarkers
For automatic data collection with our method, we used
three backgrounds: green, black and dishwasher rack.
Figure 12 shows a sample of data collected with our
method.

We collected around 1500 images for each dish type
with the images distributed over the three backgrounds
mentioned above. We were able to collect more than

18,000 images. The total time required to collect and
annotate the images was around 2 h, leaving out the time
required to setup the objects and changing the back-
grounds, which was only a few minutes.

4.1.2. Synthetically generated data
To create synthetically generated data, we first created
accurate 3D models with realistic textures of our tar-
get dishes using a 3D scanner and hiring a professional
digital artist. Figure 13 shows one of the 3D models.

We used Unreal Engine 4 (UE4) [34] and NVIDIA
Deep learning Dataset Synthesizer (NDDS) [35] tool to
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Figure 12. Data sample from the proposed method.

Figure 13. Real dish converted to 3D model.

generate our synthetic data. Our simulation setup in UE4
is shown in Figure 14.

The NDDS tool enabled us to move the dishes ran-
domly in the scene. It also provided a random back-
ground generator for domain randomization that helped
make the model robust against any background not seen
during training. Domain randomization had previously
been used to bridge the reality gap of models trained
using only synthetic data [36] and increase the accuracy
of object detection for indoor objects [37].

We made a few changes to the NDDS tool to restrict
the rotation of our symmetric objects in each axis to be
controlled by the user as rotation around the z-axis is
unfavorable for symmetric objects [38].

We generated synthetic data that had a mixture of
imageswhere each dish is present individually and images
where all the dishes are mixed together. The individual-
dish images contained three dishes of the same type. Five
thousand images for each of the 12 dishes were generated

Figure 14. Unreal Engine 4 environment.

amounting to 60,000 images. A further 5000 mixed-dish
images brought the total to 65,000 synthetic images.

The 5000 mixed-dish images also contained 1000
images to which we added synthetic noise such as water
droplets, smoke, and dirt. Some of these images are
shown in Figure 15. A sample of synthetically generated
data is shown in Figure 15.
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Figure 15. Synthetic data sample.

4.1.3. Test data
The test data used for all three model instances was a
hand-labeled dataset of multiple dishes in various real-
world backgrounds. We collected and hand-annotated
around 1500 images containing different combinations of
our dish classes. A sample of our test data is shown in
Figure 16. The distributions of the training and test data
for both models are shown in Figure 17.

4.1.4. Experiment results
We used the mean IoU metric for comparing the per-
formances of each model instance. The model instance
trained with synthetic data only achieved a mean IoU for
all dishes of 73.45%. The model instance trained with the
data collected with our method instead achieved a mean
IoU for all dishes of 94.33%. We also ran an ablation test
to see how much of an impact the extra noise had, and
the mean IoU dropped to only 93.62%. This was due to
a lack of a significant number of edge case images with
noise in the test data.

We further combined the two datasets, synthetically
generated and the data collected with our method with
added noise, to train a third instance of the model. It
achieved a mean IoU for all dishes of 97.21%.

Table 3 summarizes our test results and Figure 18
shows the IoU score for each dish class by each model
instance. As we can see, synthetic data by itself does
not make the model robust to inference on real images.

Figure 16. Test images.

Figure 17. Distributions of training and test set data. (a) Distribution of synthetic-training data. (b) Distribution of mobile-robot and
invisible-marker data. (c) Distribution of test data.
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Figure 18. Comparison of IoU scores for all dishes.

Table 3. Comparison of mean IoU scores on test data.

Mean IoU on test data
(threshold > 0.5)

Synthetic data 73.45%
Automatically collected data – with noise (proposed) 94.33%
Automatically collected data – without noise 93.62%
Combined dataset 97.21%

However, when combined with data collected by our
method, it helps to increase the robustness of object-
detection model by contributing with data on edge cases
which would have been difficult to collect manually.

4.2. Comparison amongmethods of data collection
and annotation

4.2.1. Time taken to collect images and annotate
Manual data collection is highly laborious and time-
consuming. It took us around 30 h for manual data col-
lection and annotation of around 1500 images, i.e. around

70–80 s per image. The time required increased as the size
of the dataset increased. One could reduce the time by
distributing the work among more workers, but the cost
would also increase.

Synthetic data generation is a much faster process
compared with manual data collection. However, creat-
ing accurate 3D assets of objects is an arduous task and
requires technical expertise. Setting up the simulation
environment also requires domain knowledge and exper-
tise of the tool. Once the 3D models are available and
environment is setup, however, the process is very fast.

It took us less than 5min to generate 10,000 images
and a little bit more than an hour to generate the whole
training dataset of 65,000 images. This equals around
0.03 s per image. The time required for data genera-
tion can be further reduced by using better computing
resources. We used an NVIDIA GTX 1050 GPU and
an Intel i7 processor for the synthetic-data-generation
process.

Data collection using mobile robots and invisible
markers is a much less laborious task compared with
manual data collection.Wewere able to collect and anno-
tate around 300 images in a little bit over 2min and our
whole dataset of 18,000 training images in around 2 h.

4.2.2. Cost
As manual data collection was done by in-house engi-
neers, we estimated the monetary cost for collecting the
images to be around $0.45. The cost of manual data
annotation was estimated using the current fee listed in
Amazon Mechanical Turk, which is around $0.80 per

Table 4. Comparison of data-collection methods.

Manual data collection Synthetic data collection
Automated data collection with

mobile robot (Proposed)

Data collection – Images are captured manually – Images of objects in synthetic
environment are captured
automatically

– Images are captured automatically

– Variation in object position,
background, lighting, and other
environment variables depend on
worker’s intuition and knowledge

– Object position, background,
lighting, and other environment
variables can be randomized
programmatically

– Object position, lighting, and other
environment variables can be
randomized programmatically.
Scene background can be
changed manually or modified in
post-processing

Annotation – Objects in image and their
grasp-position are annotated
manually

– Objects in image and their
grasp-position are automatically
annotated during data generation

– Objects in image and their grasp
positions are automatically
annotated using corresponding
invisible-marker image during
operation

– Quality and consistency of
bounding-box and grasp- position
annotation depends on worker’s
skill level

– Quality and consistency of
bounding-box and grasp-position
annotation is high

– Quality of grasp-position
annotation is consistent, but the
bounding-box annotations are not
precise

Cost for data collection +
annotation

– Man hour cost for data collection+
annotation: 1500–2000 USD

– Average cost of 3D model: 250 USD – Cost for mobile robots and other
equipment: ∼ 5000 USD

– Repeat costs for every new dataset – Negligible cost for any data
generated for same objects

– Negligible cost for any data
collected for any object

Time required for data collection
and annotation of one image
(seconds)

∼ 70–80 ∼ 0.03 ∼ 0.4
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image, thus a total of around $1.4 per image. This cost
could be reduced by outsourcing both the data collec-
tion and annotation tasks, but one should consider the
cost of quality and training how to collect the data in that
scenario.

In synthetic data generation, although the cost of gen-
erating a new dataset is negligible, we need to create an
accurate 3Dmodel of the objects beforehand.We used an
external service to construct accurate 3D models of our
objects, which cost us up to $250 for each object.

Data collection and annotation with our method has
an upfront cost of around $5000 for the mobile robots,
three-axis platform, invisible markers and other equip-
ment. Once the setup is complete, the cost of collecting
data and annotating an image is very small. Table 4 pro-
vides a comparison among the various data-collection
methods used in our experiments.

5. Conclusions

Weproposed amethod for data collection and annotation
using mobile robots equipped with a tilt platform and
invisible markers. Such mobile robots enable us to cap-
ture images of objects at every possible location inside the
camera’s field of view. A high-frame-rate image capture
combined with switching between white light and UV
light enables us to obtain an image pair of white-light-lit
and UV-light-lit images. The invisible marker in the UV-
light-lit image helps obtain annotation data during data
collection.

The data collected with our method are much more
useful in making deep learning models robust against
real-world conditions compared with synthetically gen-
erated data. We conclude that our proposed method can
create large datasets for deep learning models that are
consistent, realistic, less time-consuming and inexpen-
sive. Other than object detection, our method can also
be used to collect data for grasp-position-estimation and
key-point-estimation tasks.
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